Apport des techniques De caractérisation 3D Pour l'étude de la propagation des fisssures de fatigue.

J-Y Buffiere ... et beaucoup d'autres!

Université de Lyon INSA-Lyon MATEIS CNRS UMR5510

Co-authors

N. Limodin, M. Herbig, J. Adrien, I. Serrano, J. Lachambre **INSA Lyon/ MATEIS** W. Ludwig, A. Gravouil, J. Réthoré, **INSA Lyon/LAMCOS INP Grenoble/SIMAP** E.Ferrié H. Proudhon **ENSMP/CdM** S. Roux, F. Hild E.N.S. Cachan/LMT ESRF ID 19 P. Cloetens, E. Boller, J. Baruchel

Looking at cracks in 3D: the different techniques

• Stiffness

(Ravichandran and larsen 1992)

• Potential drop

(Enmark et al. Jal Nucl. Mater 1992)

- Beach marking (environment, overloads...) (*Nadot et al. 1997*)
- Serial polishing (mechanical, FIB ...) (*Clément et al. 1984, Schaef 2011*)
- 3D imaging

(Ludwig et al. 2003)

Looking at cracks in 3D: the different techniques

- Stiffness
- \rightarrow 3D shape asumption, not accurate for short cracks
- Potential drop
- \rightarrow not accurate for short cracks, no info on 3D shape
- Beach marking (environnement, overloads...)
- \rightarrow influence on growth rate
- Serial polishing (mechanical, FIB ...)
- \rightarrow destructive, limited area
- 3D imaging (X ray tomography)
- \rightarrow accuracy, availability

Outline

- **X** Experimental set ups for tomography
- \mathbf{X} The resolution *v.s.* size dilemma
- X Short cracks and the local crystallography

XTi results

XMg results

X Limits - What's next?

Experimental Setup at ID19

- Long distance (145 m)
- \rightarrow coherence (phase contrast)
- Multilayer monochromator: $\Delta\lambda/\lambda \sim 10^{-2}$
- High resolution detector system 14 bit, 1024² and 2048² CCD, 60 ms readout, 1 μm.
- Dedicated µ-tomography set-up
- Sample environment: fatigue machine, cold cell, furnace, ...

In situ fatigue

- Enables in situ cycling
- between scans
- Polymer tube
- Maximum load 2000 N
- Tension/Tension
- Cyclic frequency 25 Hz

5 cm

- Parallel beam \rightarrow no enlargement
- Resolution ~ 2 * voxel size
- Crack tip \rightarrow voxel size ~ 1 µm
- Sample size < CCD size \rightarrow section < 1 mm²

3D microstructural effects

Short cracks *v.s.* microstructure

• Cracks initiate at the pore/surface intersection

• Local deviations of the crack front \rightarrow grain boundaries?

Cast Al alloy grain size $\sim 300 \ \mu m$

σ

50 µm

Cast Al alloy grain size $\sim 300 \ \mu m$

100 µm

Ludwig et al. Acta Mater 2003.

Local crystallography: key factor

Ludwig et al. Acta Mater 2003.

Tilt vs twist mechanism

Limitations

- •Ga works only for Al alloys
- •Destructive and only provides grain shape
- Modelling requires the knowledge of local crystallography

→Diffraction Contrast Tomography

DCT: the method

DCT raw data

Pixel size 2.4 μ m, ID11 (high flux) Sample with 1000 grains $\rightarrow ca. 80\ 000\ diffraction\ spots$ on 7200 images

Ludwig et al. R.S.I. 2009

DCT on Ti alloy

Metastable β-titanium alloy
'Timet®21S'
Chemical composition:
15 wt% Mo, 3 wt% Nb

1008 grains

Evaluation of DCT

DCT grain cluster

PCT grain cluster

Principle of error calculation

Comparison of grain boundaries as reconstructed from DCT with real grain boundaries

→2.6 µm average error for 55 µm grains →DCT accurate enough to be trusted

3DXTSM – Data Acquisition

Diffraction Contrast Tomography :

Non-destructive characterization of grain orientation and grain shape

• pixel size 1.4 µm

Phase Contrast Tomography : Phase contrast makes fine crack parts visible

• interrupted in-situ measurement

3DXTSM – Experimental Details

Surface polished

- Load: 10.6-318 MPa
- Cyclic frequency 25 Hz

[Buffière et al. Mat.Sc. Tech. 2006]

3DXTSM – Volume Registration

Volumes not congruent

3DXTSM – Oversampling

Original

Cross-section through reconstructed volume

Cross-section with outline of segmented crack

3D rendering of segmented crack

Oversampled

3DXTSM – Voxels → Mesh

3DXTSM - Data Structure

- Physical orientation
- Grain affiliation
- Crystallographic orientation
- Propagation stage
- Local crack growth rate

Studied samples

sample "VST":

- Near β-titanium (bcc) alloy 'VST55531'
- Ti-5AI-5V-5Mo-3Cr-1Zr
- 2 h / 843 °C, air cooled
- Grain size ~ 65 µm
- Single growth stage analyzed at 110 k cycles

sample "21S":

- Metastable β-titanium (bcc) alloy 'Timet®21S'
- Ti-15Mo-3Nb-3Al-.2Si
- 2 h / 850 °C, quenched in water
- Grain size ~ 55 µm
- 26 stages between 45 k and 75.5 k cycles

Studied samples

sample "VST":

- Near β-titanium (bcc) alloy
 'VST55531'
- Ti-5Al-5V-5Mo-3Cr-1Zr
- 2 h / 843 °C, air cooled
- Grain size ~ 65 µm
- Single growth stage analyzed at 110 k cycles

sample "21S":

- Metastable β-titanium (bcc) alloy 'Timet®21S'
- Ti-15Mo-3Nb-3Al-.2Si
- 2 h / 850 °C, quenched in water
- Grain size ~ 55 µm
- 26 stages between 45 k and 75.5 k cycles

00.0 k cycles

47.0 k cycles

57.0 k cycles

64.0 k cycles

68.0 k cycles

71.0 k cycles

74.0 k cycles

75.0 k cycles

75.5 k cycles

In situ fatigue

Real v.s. Measured Fracture Surface

SEM micrograph: Real crack morphology

Tomographic reconstruction: Measured crack morphology

A measured {001} fracture surface might in reality be comprised of alternating {110} planes

Relation between real and measured fracture surface orientation depends on ratio between frequency of plane changes and resolution

Interpretation of Fracture Surface in "21S"

high ≠ real red, blue "double slip" orientation

M. Herbig et al. Acta Mater 2010.

Crack Fronts

Extraction of Local Growth Rate

3D Local Growth Rate

Stripes \leftrightarrow **Crack Growth Direction**

Physical orientation

Crystallographic orientation

Fatigue Mechanisms

Crack propagation through grain boundaries

Zhai et al., Int. J. Fat. Eng. Mat. 2005], [Schaef et al., Acta Mat. 2011]

Stripes \leftrightarrow **Crack Growth Direction**

Measured crack growth directions

Crack fronts and stripe directions don't necessarily match

Schmid factors + uniaxial tensile test \rightarrow much too simple

Courtesy. Henry PROUDHON ENSMP Paris

Accumulated plastic strain

Sample

Short fatigue cracks

- Microtomography to observe short fatigue crack growth in-situ in a grain mapped sample.
 - FIB notches placed in specific grains
 - In-situ fatigue using machine from INSA de Lyon
 - Use radiographs to monitor crack
 - Use tomograms to record crack evolution in 3D

A. King et al., Acta Mater. 59 (2011) 6761-6771

Crack growth rate

A light for Science

17

- Derive local crack growth rate from series of tomograms
 - Use projection of crack on x-y plane for ease of viewing

Crack and microstructure

A light for Science

Look at final crack shape compared to microstructure

Microstructure analysis

A light for Science

- Schmid factor assuming uniaxial tensile stress, calculate the shear stress resolved onto slip systems - ~driving force
- Tilt/Twist description of boundaries how easily can a crystallographic crack reinitiate when crossing a boundary

Neighbourhood factors

A light for Science

- Fast, non-crystallographic crack growth in a grain with low driving force
 - Need 3D neighbourhood and chronology to understand
 - Crack advances subsurface, leaving a ligament which then fails rapidly
 - Surface observations would be misleading

Compatibility to notch

One more factor

- The crack grows from the plane of the notch onto the slip planes
- Somewhat like grain boundary twist, the compatibility of these planes is important
- Finally, seems that all the factors discussed influence behaviour
 - Challenging modelling problem
 - More data would be interesting
 - How does crack get past obstacles?

Limitations

- •Spatial resolution too low for imaging fine crack details
- •DCT only works for undeformed material
- •Time sampling (GB crossing)
- •Microstructure influence \rightarrow Low stress levels

 \rightarrow Long experiments

- •SR experiments \rightarrow low availability
- •Artificial defects
- •Modelling!!

What's next?

- •Crystal plasticity analysis of short cracks
- Crack closure measurement + in situ cycling
- •Fatigue test at (relatively) high temperature
- Fatigue test under vacuum

. . .

•Combine imaging with strain measurements