

Amorçage et Propagation de fissures en fatigue : simulations du 316L par Dynamique des dislocations

Vara G. PRASAD REDDY, Christophe DEPRES, Christian ROBERTSON <u>Marc FIVEL</u> SIMaP-GPM2, Grenoble INP / CNRS.

Marc.Fivel@grenoble-inp.fr

SF2M – Commission Fatigue, Séminaire du 2 avril 2013, ENSAM Paris

'Engineering' application: How do cracks initiate in fatigue ? (AISI 316L surface grains)

<u>Main objective</u> : Understand physical mechanisms at the origin of cracks

Experimental evidence: Controlled experiment

Experimental evidence: Observations

D

 \rightarrow Two slip systems identified $\tau^{(s)}_{\tau^{03}}$ $\sigma 0 0$ $\sigma = 0 \sigma 0$ 1.0 $\left| \begin{array}{c} 0 & 0 \end{array} \right|_{\{\bullet, \bullet, \mathbf{N}\}}$ 0.8 0.6 0.4 0.2 0.0 → Syst. $[\bar{1}10](111)$ $[\bar{1}10](11\bar{1})$ $[011](\bar{1}\bar{1}1)$ $[011](1\bar{1}1)$ $\begin{array}{c} [101](11\bar{1})\\ [101](1\bar{1}\bar{1}) \end{array}$ |(111) $(\bar{1}11)$ (111) $(1\bar{1}\bar{1})$ [01](111)[01](11]0 110210/010 alval •• $\begin{array}{c} 05\\ 06 \end{array}$ $07 \\ 08$ $0.3 \\ 0.4$ 60 10 \overline{c}

Transmission Electronic Microscopy (TEM)

→ Heterogeneous dislocation microstructure

Atomic Force Microscopy (AFM)

 \rightarrow *Extrusion relief (time dependent)*

Discrete Dislocation Dynamics (code TRIDIS)

Dislocations = edge and screw segments embedded in an elastic continuum (similar to elastic inclusions)

Example : Frank Read source

Plastic deformation: direct output

Discrete Dislocation Dynamics Modelling: Boundary conditions

Model validation : single slip ($\tau_p = 3\tau_d$)

Model validation : single slip ($\tau_p = 3\tau_d$)

Model validation : single slip ($\tau_p = 3\tau_d$)

Single slip

Strain localization mechanisms

Strain localization mechanisms

Strain localization (double slip)

Effect of the strain amplitude : e cstt ; n $\alpha \Delta \epsilon^{p}$; d $\alpha 1/\Delta \epsilon^{p}$

Mechanism for the **formation** of the persistent slip band

Kinetics of the persistent slip band (snapshots at $|\epsilon| = \epsilon_{max}$)

Plastic slip occurs at the band interface (after stabilisation of disl. density (N> 10))

Sweeping of the prismatic loops (multipoles) by mobile interface dislocations

Reversible versus irreversible slip

$$a_{cum} = \sum_{n_{coin}} \frac{L_c^i}{\cos \alpha} = \text{cumulated height}$$
$$\gamma_p^{surf} = \frac{a_{cum}.b.\cos \alpha}{S}$$

$$\gamma_p^{surf}(t) = \gamma_{p,rev}^{surf}(t) + \gamma_{p,irr,cum}^{surf}(t)$$

$$\gamma_{p,irr,cum}^{surf}(N) = K\sqrt{N}$$

Distorsion energy in channels

Stress state in channels

Stress state in channels

Crack initiation criterion

Crack growth in the first grain

Crack growth in the first grain

Change in crack shape and complex dislocation microstructure (not PSB)

Crack introduced after the PSB is formed

Crack shape not modified, dislocation microstructure unchanged

Crack growth in the first grain

Crack introduced after the PSB is formed

Crack propagation in second grain (indirect slip transmission)

Effect of local misorientation : tilt, twist, theta

DDD modelling results:

- 1- Dislocation organisation in PSB \rightarrow Intense slip bands formed by cross-slip and interactions \rightarrow Slip band = Channels + Tangles + Pile-ups

 - [C. Déprés, C.F. Robertson, M.C. Fivel, Phil. Mag., 84 (22), pp.2257-2275, (2004)]
- 2- Irreversibility at the surface \rightarrow Extrusion and intrusions observed (without diffusion)
 - \rightarrow Extrusion = Tongue like (instead of ribbon like) \rightarrow Extrusion width cstt

 - \rightarrow Extrusion height α N^{1/2}

[C. Déprés, C.F. Robertson, M.C. Fivel, *Phil. Mag.*, 86 (1), pp. 79-97, (2006)]

- 3- Crack propagation in the first grain

 - \rightarrow Crack at PSB/matrix interface can propagate \rightarrow CTSD depends on the grain size if crack close to GB

[V.G. Prasad Reddy, C. Déprés, C.F. Robertson, M.C. Fivel, submitted to Acta Materialia 2013]

- 4- Crack propagation in the next grain
 - \rightarrow 'Crack in grain 1 imposes microstructure in grain 2 \rightarrow Large disorientations favour plastic strain spreading

[V.G. Prasad Reddy, C.F. Robertson, C. Déprés, M.C. Fivel, submitted to Acta Materialia 2013]

Limits and improvements under investigation:

 \rightarrow Taking into account the image forces (negligible)

 \rightarrow Effect of point diffusion \rightarrow Need a coupling with diffusion theories

 \rightarrow What if precipitates are present (e.g. Waspaloy):

[C.S. Shin, C.F. Robertson, M.C. Fivel, Phil. Mag., 87 (24), pp. 3657-3669, (2007)]

 \rightarrow Effect of neighbour grains

This work was supported by CPR-SMIRN and ANR AFGRAP involving CEA, CNRS and EDF