

Effet des fortes contraintes hydrostatiques sur la tenue en fatigue des matériaux métalliques

I. Koutiri^a, D. Bellett^b, F. Morel^b
a) Arts et métiers ParisTech(Paris)
b) Arts et métiers ParisTech(Angers), LAMPA

Arts et Métiers ParisTech, Laboratoire Arts et Métiers ParisTech Angers 49035, Angers cedex 01

Contexte industriel **PSA PEUGEOT CITROËN** Noyau d'eau Culasse **Admission** automobile Échappement (moteur diesel) de la société PSA $\max\left[\left\|\hat{\tau}(\underline{n},t)\right\|\right]$ Chargement de traction [Comte et al. 2005] n biaxiale avec forte contrainte moyenne Zone froide des culasses 70 Oroite de Dans Van $\Sigma_{11}(t)$ 0 60 $\Sigma_{22}(t) = k \Sigma_{11}(t)$ 0 $\Sigma =$ 0 50 0 0 0 Σ 40 Rm 30 20 Cycle-pression Σm Serrage Trempe-revenu 10 $\Sigma_{H}(t)$ 0 20 40 60 80 100 120 140 0 Montée température Frettage ET METIERS

Fatigue en présence d'endommagement [Karadag et al. 2003]

Matériau : Acier SAE 1045 (différents traitements thermiques) Rapport de charge R=0.8 et 0.9 Sollicitation : Traction uniaxiale

<u>Rc 50 (R=0.8)</u>

Amplitude proche entre faible et grand nombre de cycles Limite de fatigue du matériau proche de sa limite à rupture R=0.9 (Cas du Rc50)

Effet bénéfique de la moyenne - fort rapport de charge

Augmentation de l'amplitude des contraintes

- Sollicitation de flexion-torsion et des faibles rapports de charge
- Peu informations : cas des forts rapports de charge et effets de biaxialité

Modélisations existantes ? Cas des forts rapports de charge et effets de biaxialité

Modélisation des effets de moyenne - cas uniaxial

Modélisation des effets de biaxialité

Effet du rapport de biaxialité

ET MÉTIER

- Effet du rapport de biaxialité ? néfaste ou bénéfique Effet de biaxialité et de contrainte moyenne

- Effet de moyenne et tendance ?

Objectifs scientifiques

 Caractériser le comportement en fatigue de l'alliage d'aluminium de fonderie : Rôle des hétérogénéités microstructurales : effet de moyenne (forts rapports de charge) et de biaxialité

✓ Biaxialité = Traction biaxiale

✓ Chargements affines radiales

 Modéliser les effets de moyenne et de biaxialité de l'alliage d'aluminium de fonderie (adapté aux mécanismes observés).

- Prendre en compte l'effet du dommage sous fortes valeurs moyennes

- Caractérisation des mécanismes d'amorçage
- Modélisation proposée

<u>Plan</u>

- I. Comportement et mécanismes d'amorçage en fatigue uniaxiale et biaxiale avec contrainte moyenne
 - Chargement uniaxial : Flexion plane et torsion
 - Chargement multiaxial : Traction équibiaxiale
 - Analyse des effets de moyenne et de biaxialité

- II. Modélisation probabiliste de l'effet des hétérogénéités microstructurales (cas de l'AlSi7Cu05Mg03)
 - Mécanisme 1 : Mésoplasticité
 - Mécanisme 2 : Mécanique de la rupture

Matériau : AlSi7Cu05Mg03

	Fe	Si	Cu	Mg	Zn	Mn	Ni	Ti	Pb	Sn
Min (%)	-	6,50	0,40	0,28	-	-	-	0,08	-	-
Max(%)	0,20	7,50	0,60	0,35	0,10	0,10	0,05	0,20	0,05	0,05

Traitement thermique T7 DAS = $80 \ \mu m$ Re_{0.2} = 251 MPa Rm = 318 MPa **A% = 3-5 %**

Présence de micro-retassures due au procédé de fonderie Surface des retassures ($\sqrt{\mu m^2}$)= 48 à 245

ET MÉTIER

Comportement peu ductile

9 Laboratoire Arts et Métiers Paris Tech d'Ang

Prélèvement de matière

PSA PEUGEOT CITROËN

10

1.Modification des culasses pour extraction d'éprouvettes Collaboration avec L. Augustins et fonderie de Charleville-Mézières

2. Extraction et Géométrie d'éprouvettes

Analyse par tomographie #1

Caractérisation du matériau Tomographe v/tome/X du laboratoire MATEIS de l'INSA Lyon (J. Adrien)

Volume scanné : $3,5 \times 4 \times 6,5 \text{ mm}^3$

Analyse par tomographie #2

Exemple de géométrie tortueuse (700 x 500 x 300 µm)

Sphéricité :

-s tend vers 1 pores sphériques

12

-s tend vers 0 pores tortueux

Hypothèse de géométrie hémisphérique contestable [Buffière et al 2001]

Synthèse des résultats expérimentaux en fatigue uniaxiale

Prélèvement dans les culasses

•<u>Sollicitation</u> Flexion plane et traction

• <u>Fréquence</u> = 80 Hz (F.P) et 30 Hz (T.) **10 éprouvettes par escalier** Polissage jusqu'à 3 μm

 <u>Critère d'arrêt</u> Chute de fréquence de 0.1 Hz (taille de fissure ≈ 1 mm)

13

Aplatissement des courbes pour les forts rapports de charge [Karadag et al 2003]

Mécanismes (chargement uniaxial AlSi7Cu05Mg03) #1

Apparition de deux mécanismes co-existants (sur une même éprouvette)

Amorçage des fissures de fatigue non associées aux défauts contrôlé par la matrice Al, les particules Si et les précipités)

[Gao et al 2004]

Mécanisme 2

Amorçage des fissures de fatigue à partir des défauts (pores)

[Inguanti 1985, Sonsino et al 1991, Murali et al 1997, Powell 1994, Skallerud 1993,...].

Mécanismes (chargement uniaxial AlSi7Cu05Mg03) #2

I. Comportement et mécanismes d'amorçage en fatigue uniaxiale et biaxiale

15

Mécanismes sous fort rapport de charge

Zone I – Zone

d'endommagement ductile

Surface de l'éprouvette

ET MÉTIEI

Porosité

Cas d'un alliage d'aluminium de fonderie

Faciès de rupture sous fort rapport de charge R=0.9 N = 5,5.10⁵ cycles $\Sigma_{amp} = 15$ MPa Traction uniaxial

Mécanismes similaires sur un alliage d'aluminium corroyé 2024-O.

III. Effet du couplage Plasticité/Endommagement à fortes valeurs moyennes

Comportement en torsion (AlSi7Cu05Mg03)

20 éprouvettes par escalier pour chaque mode de chargement

Nombre de cycles

• limite de fatigue en torsion-flexion plane quasi similaire

Σxy,a amplitude de torsion

Ex. de matériau à défaut FGS [Nadot et al 2004] Traction uniaxiale = 225 MPa et Torsion = 217 MPa

Non-amorçage sur pores Propagation en mode II (Plan de cis. max)

Obs. similaires par [Pinna et al 2009] sur un acier maraging

<u>Plan</u>

I. Comportement et mécanismes d'amorçage en fatigue uniaxiale et biaxiale avec contrainte moyenne

- Chargement uniaxial : Flexion plane et torsion
- Chargement multiaxial : Traction équibiaxiale
- Analyse des effets de moyenne et de biaxialité
- II. Modélisation probabiliste de l'effet des hétérogénéités microstructurales (cas de l'AlSi7Cu05Mg03)
 - Mécanisme 1 : Mésoplasticité
 - Mécanisme 2 : Mécanique de la rupture
- III. Effet du couplage Plasticité/Endommagement à fortes valeurs moyennes
 - Modèle de Monchiet
 - Modélisation proposée

I. Comportement et mécanismes d'amorçage en fatigue uniaxiale et biaxiale

18

Mise en place d'un dispositif expérimental de flexion axisymétrique

Machine de traction-compression avec montage dédié

Synthèse des résultats expérimentaux en fatigue équibiaxiale

- Critère d'arrêt : $\Lambda \epsilon$ =100 $\mu\epsilon$ (jauge sur toutes les éprouvettes)

-Limite de fatigue similaire entre le chargement de flexion plane et de traction équibiaxiale

R = 0.1

Mécanismes (traction équibiaxiale)

Deux mécanismes similaires au chargement uniaxial

Amorçage des fissures de fatigue contrôlé par la matrice Al, les particules Si et les intermétalliques, dans la zone eutectique

Mécanisme 2

Propagation des fissures de fatigue à partir des défauts (pores) Plus de direction privilégiée

LABORATOR Arts et Métiers ParisTech d'Angers

21

<u>Plan</u>

- I. Comportement et mécanismes d'amorçage en fatigue uniaxiale et biaxiale avec contrainte moyenne
 - Chargement uniaxial : Flexion plane et torsion
 - Chargement multiaxial : Traction équibiaxiale
 - Analyse des effets de moyenne et de biaxialité
- II. Modélisation probabiliste de l'effet des hétérogénéités microstructurales (cas de l'AlSi7Cu05Mg03)
 - Mécanisme 1 : Mésoplasticité
 - Mécanisme 2 : Mécanique de la rupture
- III. Effet du couplage Plasticité/Endommagement à fortes valeurs moyennes
 - Modèle de Monchiet
 - Modélisation proposée

Synthèse des effets de la biaxialité

- Diagramme de Dang Van

2024-0 AlSi7Cu05Mg03 cisaillement admissible (s ur ra Contrainte de cisaillement admissible Equibiaxiale (F.Ax.) Uniaxial (T.) Biaxial (T.) (s ur le plan critique) plan critique) R=-1 R=-1 -50 R=0.1 R=0.1 R=0.03 ra Contrainte de le R=0.62 Contrainte hydrostatique (MPa) -50 50 100 0 150 Contrainte hydrostatique (MPa) Q/ Utilisation de l'éprouvette disque Utilisation de l'éprouvette en X (Degré de biaxialité de 0.4)

- Pas d'effet néfaste de la biaxialité [Poncelet et al 2009]
- Critère de Dang Van conservatif

ET MÉTIERS

I. Comportement et mécanismes d'amorçage en fatigue uniaxiale et biaxiale

24

Conclusion partielle

✓ Caractérisation du comportement de l'alliage d'aluminium de fonderie en fatigue uniaxiale et biaxiale.

 ✓ Apparition de deux types de mécanismes d'amorçage suivant le type d'hétérogénéités microstructurales dans l'alliage d'aluminium de fonderie.

 ✓ Limite de fatigue en torsion proche de la limite de fatigue en flexion plane (Alliage d'aluminium de fonderie)

Pas d'effet néfaste de la biaxialité (Alliage d'aluminium de fonderie et autres matériaux)

<u>Plan</u>

I. Comportement et mécanismes d'amorçage en fatigue uniaxiale et biaxiale avec contrainte moyenne

- Chargement uniaxial : Flexion plane et torsion
- Chargement multiaxial : Traction équibiaxiale
- Analyse des effets de moyenne et de biaxialité

II. Modélisation probabiliste de l'effet des hétérogénéités microstructurales (cas de l'AlSi7Cu05Mg03)

- Mécanisme 1 : Mésoplasticité
- Mécanisme 2 : Mécanique de la rupture
- III. Effet du couplage Plasticité/Endommagement à fortes valeurs moyennes
 - Modèle de Monchiet
 - Modélisation proposée

Alliage d'aluminium de fonderie

Mécanismes d'amorçage de fissures rencontrés dans le matériau

Mécanisme 1

[Gao et al 2004]

Amorçage des fissures de fatigue non associés aux pores (mais contrôlé par la matrice Al, les particules Si et les précipités)

Mécanisme 2

Amorçage des fissures de fatigue à partir des défauts (pores)

[Inguanti 1985, Sonsino et al 1991, Murali et al 1997, Powell 1994, Skallerud 1993,...].

Mécanismes différents selon hétérogénéités microstructurales

Critère de fatigue probabiliste

Mécanisme 1 : Mésoplasticité

Inclusion elastoplastique

$$f_{01} = \frac{m_1}{\Gamma_{01}} \left(\frac{\Gamma_c}{\Gamma_{01}}\right)^{m_1 - 1} exp\left[-\left(\frac{\Gamma_c}{\Gamma_{01}}\right)^{m_1}\right]$$

Distribution de Weibull [Flacelière 2004, Doudard 2004]

$$\Gamma_{\infty} = \frac{\left(T_{a_{-}} \tau_{y}^{(o)}\right)}{q} < \Gamma_{c}$$

Déformation plastique mésoscopique accumulée [Papadopoulos 1993]

$$P_{F1} = 1 - exp\left[-\frac{1}{V_{01}}\int\limits_{V}\left\{\int_{\varphi=0}^{2\pi}\int_{\theta=0}^{\pi}\int_{\psi=0}^{2\pi}\left(\frac{\Gamma_{\infty}(\theta,\phi,\psi)}{\Gamma_{01}}\right)^{m1}sin\theta d\theta d\psi d\varphi\right\}d\psi$$

Hyp. du maillon le plus faible

[Pessard 2009]

ET MÉTIERS

$$1 - P_f = (1 - P_{f1}) (1 - P_{f2})$$

Distribution de Weibull + hypothèse du maillon le plus faible

II. Modélisation probabiliste de l'effet des hétérogénéités microstructurales

Mécanisme 2 : Mécanique de la rupture

28

Prédictions du modèle probabiliste – AlSi7Cu05Mg03

Diagramme de Kitagawa – Takahashi Rapport de charge R=-1 (Traction uniaxiale) Paramètres : Δ Kth = 4 MPa.m^{1/2} et β = 0.65 (fissure semi-circulaire)

II. Modélisation probabiliste de l'effet des hétérogénéités microstructurales

29

<u>Plan</u>

I. Comportement et mécanismes d'amorçage en fatigue uniaxiale et biaxiale avec contrainte moyenne

- Chargement uniaxial : Flexion plane et torsion
- Chargement multiaxial : Traction équibiaxiale
- Analyse des effets de moyenne et de biaxialité
- II. Modélisation probabiliste de l'effet des hétérogénéités microstructurales (cas de l'AlSi7Cu05Mg03)
 - Mécanisme 1 : Mésoplasticité
 - Mécanisme 2 : Mécanique de la rupture
- III. Effet du couplage Plasticité/Endommagement à fortes valeurs moyennes
 - Modèle de Monchiet
 - Modélisation proposée

Mécanisme 1 : Mésoplasticité - Cas de matériaux sans défauts

Modèle de [Huyen-Morel 2008]

- Basé sur l'adaptation élastique

- 3 paramètres du modèle à identifier :
- α Coefficient effet de biaxialité
- Utilisation de la contrainte normale γ Coefficient effet de la contrainte moyenne
 - m₁ Paramètre de Weibull (effet de dispersion)

31

$$P_{F1} = 1 - exp \left[-\frac{1}{V_{01}} \int\limits_{V} \frac{X_a^{m_1}}{T_{01}^{\prime m_1}} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \int_{\psi=0}^{2\pi} \left(\frac{\chi_a(\theta,\phi,\psi)}{\left(1-\gamma \sum_{n,m}(\theta,\phi)\right) X_a} \right)^{m_1} sin\theta d\theta d\phi d\phi dV \right]$$

$$\chi_a(\theta,\phi,\psi) = T_a(\theta,\phi,\psi) + \alpha \Sigma_{n,a}(\theta,\phi) \qquad X_a = \max_{\theta,\phi,\psi} \{\chi_a(\theta,\phi,\psi)\}$$

Capacités de prédictions du critère à caractériser le comportement en fatigue du matériau sous effet de moyenne et de la biaxialité (traction biaxiale) ?

Synthèse des critères de fatigue

Contrainte hydrostatique	Contrainte normale	
$\begin{aligned} & \underset{\bar{n}}{\text{Critère de Dang Van}} \\ & \underset{t}{\max} \left\{ \underset{t}{\max[\ \vec{\tau}_{a}(\vec{n},t)\ + \alpha \Sigma_{h}(t)]} \right\} \leq \beta \\ & \overline{\text{Critère de Papadopoulos}} \\ & \sqrt{\langle [\tau_{a}(\theta,\phi,\psi)]^{2} \rangle + \alpha \Sigma_{h,max}} < \beta \end{aligned}$		<i>Coef. non dédié aux effets de moyenne</i>
Critère de Huyen (Hyd.)	Critère de Huyen (Norm.) $P_{F1} = 1 - exp \left[-\frac{1}{V_{01}} \int_{V} \frac{X_a^{m_1}}{T_{01}^{rm_1}} \left\{ \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \int_{\psi=0}^{2\pi} \left(\frac{\chi_a(\theta, \phi, \psi)}{(1 - \gamma \Sigma_{n,m}(\theta, \phi)) X_a} \right)^m sin\theta d\theta d\phi d\phi \right\} dV \right]$ $\chi_a(\theta, \phi, \psi) = T_a(\theta, \phi, \psi) + \alpha \Sigma_{n,a}(\theta, \phi)$ Critère de Liu et Zenner	<i>Coef. dédié aux effets de moyenne</i>
Matériaux de la littérature		

- XC 48 [Simburger 1975]
- St35 [Issler 1973]

ET MÉTIERS

• 25CrMo4 [Mielke et al 1980]

• 34Cr4 [Hendenreich 1983]

Laboratoire Arts et Métiers Paris

32

- ER7
- 2024-0

Erreurs de prédictions des critères – chargement de traction biaxiale

II. Modélisation probabiliste de l'effet des hétérogénéités microstructurales

33 Laboratoire Arts et Métiers ParisT

Synthèse des critères de fatigue

Contrair	nte hydrostatique	Contrainte normale					
Critère de	e Dang Van		<i>Coef. non dédié aux effets de moyenne</i>				
Critère de	Papadopoulos						
Critère de	Huyen (Hyd.)	Critère de Huyen (Norm.)	Coef. dédié aux effets de				
		Critère de Liu et Zenner	moyenne				
Adapté aux effets de moyenne et de biaxialité (traction biaxiale)							
ARTS ET MÉTIERS ParisTech	TT 3.4 1/1· .· 1 1·1· . 1	11 66 , 1 1 / / / / / / , 1	LANDATAS et Métiers Paris Tech d'Anger				

II. Modélisation probabiliste de l'effet des hétérogénéités microstructurales

34

<u>Plan</u>

I. Comportement et mécanismes d'amorçage en fatigue uniaxiale et biaxiale avec contrainte moyenne

- Chargement uniaxial : Flexion plane et torsion
- Chargement multiaxial : Traction équibiaxiale
- Analyse des effets de moyenne et de biaxialité

II. Modélisation probabiliste de l'effet des hétérogénéités microstructurales (cas de l'AlSi7Cu05Mg03)

- Mécanisme 1 : Mésoplasticité
- Mécanisme 2 : Mécanique de la rupture
- III. Effet du couplage Plasticité/Endommagement à fortes valeurs moyennes
 - Modèle de Monchiet
 - Modélisation proposée

Mécanisme 2 : Mécanique de la rupture - Défauts

Modèle de [Pessard 2009]

$$P_{F2} = 1 - exp\left[-\frac{1}{V_{02}}\int\limits_{V} \frac{\Sigma_{n,a}^{m_2}}{\Sigma_{02}(R)^{m_2}} \left\{\int\limits_{\varphi=0}^{2\pi} \int\limits_{\theta=0}^{\pi} \left(\frac{\sigma_{n,a}(\theta,\varphi)}{\Sigma_{n,a}}\right)^{m_2} sin\theta d\theta d\varphi\right\} dV\right]$$

3 paramètres du modèle :

- m Paramètre de Weibull (effet de dispersion)

Intégration de l'effet du rapport de charge [Klesnil 1972, Kujawski 2001]

- κ Coefficient effet du rapport de charge

$$\Sigma_{02}(R) = \frac{\overline{\Sigma_d(R)} = 0}{\Gamma\left(1 + \frac{1}{m_2}\right)J_{m2}^{-1/m_2}}$$

- Basé sur la mécanique de la rupture

- Utilisation de la contrainte normale

Prédictions (mécanisme 2) - Effet de moyenne

- Bonnes prédictions du critère dans le cas d'effet de la moyenne

- Peu d'influence du paramètre de Weibull m₂.

- m_2 égal à 5 (identifié sur un escalier à l'aide de 20 éprouvettes)

Prédictions (mécanisme 2) - en traction équibiaxiale

Effet du paramètre de Weibull m₂ :

ET MÉTIEF

- Influence du paramètre de Weibull m₂
- Ecarts de prédiction (variation du paramètre m₂ avec l'effet de la moyenne)

38

Synthèse Prédictions/Expérimental

Conclusion

- Caractérisation du comportement en FGNC d'un alliage d'aluminium de fonderie. Effet de moyenne et de biaxialité.
- Caractérisation des mécanismes d'endommagement associés aux différents modes de chargement (traction uniaxiale, traction biaxiale et torsion).
- Mise en évidence de deux mécanismes : amorçage dans la matrice et microfissuration à partir des pores.
- **Critère multiaxial probabiliste** tenant compte des deux mécanismes suivant le type d'hétérogénéités microstructurales moteur
- Modélisation intégrant l'effet du dommage au premier ¼ de cycle.

Perspectives

- Evolution de l'exposant de Weibull avec la contrainte moyenne.
- Application de l'approche fiabiliste à d'autres matériaux à défauts.
- Validation du modèle de couplage plasticité-endommagement sur une large gamme de matériaux – Campagne expérimentale associée (Machine de Traction-Torsion-Pression interne)
- Prise en compte de l'effet bénéfique de la moyenne via l'écrouissage du matériau.

Conclusion et perspectives

- Thèse disponible sur le site Pastel de l'école doctorale

Coordonnées :

<u>Franck.morel@ensam.eu</u> / 02.41.20.73.36 <u>Daniel.Bellett@ensam.eu</u> / 02.41.20.73.27

