

Comportement en fatigue oligocyclique des aciers inoxydables austénitiques en milieu eau primaire REP

Low cycle fatigue behaviour of austenitic stainless steels in Pressurized Water Reactor environment

Jean Alain LE DUFF, André LEFRANCOIS

AREVA NP Engineering Division – Materials, Technology & Chemistry Department

Jean Philippe VERNOT, Dominique MARTIN

AREVA NP Technical Center - Fluids & Structural Mechanics Department

Olivier CALONNE

AREVA NP Technical Center - Corrosion Department

Paris les 23 et 24 mai 2007

AREVA NP

SF2M

JP2007

AREVA Rappel concernant les courbes de conception en fatigue des composants de réacteurs

- La conception en fatigue d'un composant REP impose de vérifier l'absence d'amorçage de fissure pour 40 ans ou 60 ans,
- La démonstration est basée sur des calculs de facteurs d'usages (f.u. < 1) selon des méthodologies codifiées (ASME et RCC-M)</p>
- Le nombre de transitoires acceptables pour un composant est obtenu en utilisant des courbes S – N de conception codifiées
- Origine des courbes de conception en fatigue codifiées:
 - Courbes S-N moyennes en air (criteria ASME III, 1969):
 - Essais en air sur petites éprouvettes polies à déformation imposée
 - Courbes de fatigue moyennes établies en termes d'amplitudes de déformation « ε_a » en fonction de N_R → ε_a = A N_R^{-0,5} + B

Facteurs 2 et 20 pour une transposition éprouvette / composant

- Facteur 20 sur N_R égal au produit de 3 sous facteurs:
 - Dispersion des données (écart maximum/moyenne) → 2.0

 - Effets d'état de surface, d'atmosphère, etc. → 4.0

AREVA NP

SF2M

Courbe de conception en fatigue des composants en acier inoxydable austénitique

AREVA

AREVA Effet d'environnement en fatigue oligocyclique

- Nombreux essais de fatigue oligocyclique au Japon (IHI,MHI) et aux USA (ANL) en milieu eau à haute température depuis:
 - ~ 25 ans pour les aciers au C-Mn et faiblement alliés,
 - ~ 10 ans pour les aciers inoxydables austénitiques.
- Essais réalisés sur éprouvettes polies en milieu eau REB (Réacteur Bouillant) ou REP (Réacteur à Eau Pressurisé)
- Influence prépondérante des paramètres suivants sur la durée de vie en fatigue en milieu eau à haute température (< 325°C):</p>
 - Réduction de durée de vie plus importante à température élevée,
 - Forte réduction de durée de vie à faible vitesse de déformation,
 - Effets néfastes du niveau d'oxygène dissous du milieu eau et de la teneur en soufre (aciers au C-Mn et faiblement alliés).
- Proposition d'expressions empiriques pour évaluer des facteurs d'effet d'environnement (F_{en}) au Japon et aux USA:

F_{en} = N_{air} (durée de vie en air) / N_{eau} (durée de vie en eau)

Evaluation du facteur F_{en} d'effet d'environnement sous sollicitations de fatigue thermique

Intégration des vitesses moyennes de déformation

AREVA Programme de R&D sur le comportement en fatigue oligocyclique d'un acier 304L en milieu eau REP

- Mise au point des essais de fatigue oligocyclique en autoclave
 - Equipement de deux machines pour essais en milieu eau REP:
 - Aménagements d'autoclaves pour essais à 300°C et ~ 150 bars,
 - Mise en place de systèmes de conditionnement du milieu eau REP,
 - Usinage de montages pour la fixation des capteurs de déformation,
 - Calibrations du système de pilotage à déformations imposées,
 - Mise au point d'essais avec signaux triangulaires et complexes,...
 - Fixation du capteur de déformation sur les épaulements de l'éprouvette afin éviter tout risque d'amorçage sur la partie utile sous les couteaux de fixation du capteur de déformation
- Réalisation d'essais de fatigue oligocyclique préliminaires:
 - Essais sur éprouvettes cylindriques Ø 9 mm en air et eau à 300°C,

• Essais avec $\epsilon' = 0,4$ %/s pour $\Delta \epsilon_t / 2 = \pm 0,2$ %, $\pm 0,4$ % ou $\pm 0,6$ %,

• Essais en eau primaire REP avec ϵ ' = 0,01 %/s ($\Delta \epsilon_t$ / 2 = ± 0,6 %).

SF2M

AREVA Développement de moyens d'essais de fatigue oligocyclique en milieu eau primaire REP à 300°C et ~ 150 bars au Centre Technique d'AREVA NP au Creusot

AREVA NP

JP2007

SF2M

Eprouvette de fatigue et extensomètre utilisés pour les essais de fatigue oligocyclique en milieu eau REP

SF2M

AREVA NP

A

AREVA

JP2007

AREVA Extensomètres utilisés pour les essais de fatigue oligocyclique en air à 300°C et en milieu eau REP

JP2007

Configuration d'étalonnage Configuration d'essais

SF2M

Milieu eau primaire REP

AREVA NP

Paris les 23 et 24 mai 2007

Essais préliminaires de fatigue oligocyclique à 300°C en air AREVA et en eau avec $\varepsilon' = 0,4$ %/s - Courbes moyennes ASME et ANL

AREVA Exemple d'évaluation des sollicitations thermiques sur une soudure entre ligne auxiliaire et piquage primaire

Essai de fatigue oligocyclique sous chargement AREVA complexe proche d'un transitoire thermique de fonctionnement (double choc thermique)

AREVA NP

Paris les 23 et 24 mai 2007

17

Exemples d'endommagements observés sur la surface d'éprouvettes polies pré-cyclées en air ou en milieu eau REP à différentes vitesses de déformation

AREVA

AREVA NP

AREVA Premières conclusions du programme d'essais de fatigue oligocyclique en cours sur acier 304L en milieu eau primaire REP (état poli laboratoire)

- Résultats d'essais effectués avec des signaux triangulaires relativement proches de ceux prévus par les modèles d'évaluation des facteurs « Fen » Japonais et US
- Durées de vie obtenues sous chargements complexes représentatifs bien supérieures à celles prédites à l'aide des expressions de calcul des facteurs « Fen » Japonais ou US
- Pour des signaux complexes, mise en évidence, sur acier 304L, du conservatisme excessif des méthodes applicables d'évaluation des effets d'environnement en fatigue thermique

Perspectives du programme d'essais de fatigue en milieu eau primaire REP

- Reproduction en laboratoire d'histoires de chargements thermiques réalistes proches de ceux imposés sur certains composants REP en service comme les piquages primaires
- Réalisation en milieu eau REP à 300°C et ~ 150 bars d'essais de fatigue oligocyclique sur éprouvettes meulées ayant un état de surface voisin de celui des composants

SF2M

Rugosité R_t ≈ 50 µm

AREVA NP

High Cycle Thermal Fatigue Issues in PWR Nuclear Power Plants Life Time Improvement of some Austenitic stainless Steel Components

Jean Alain LE DUFF, André LEFRANCOIS, Yves MEYZAUD

AREVA NP – Materials Technology & Chemistry Department

Jean Philippe VERNOT, Dominique MARTIN

AREVA NP- Fluids & Structural Mechanics Department

José MENDEZ, Yoann LEHERICY

ENSMA – Laboratoire de Mécanique et de Physique des Matériaux

JIP2006

AREVA NP

SF₂

Paris - May 30,31 - June 1st, 2006

AREVA NP

AREVA NP Activities Reactors & Services Division

- Design and Building of both types of light water reactors, the PWR and the BWR.
- Reactors & Services Division Provides the necessary services and equipment for power plant maintenance and operations.
- AREVA NP is the world's leading supplier of nuclear power equipment and services.
- Manufacturing facilities are located primarily in France (Chalon-sur-Saône, Jeumont), Germany and the United States

AREVA High Cycle Thermal Fatigue issues in PWR Nuclear Power plants & root causes

Thermal Fatigue concerns essentially 304L and 316L austenitic stainless steel components

Residual Heat Removal System (1988)

JIP2006

High Cycle Thermal fatigue in RHRS mixing tees

Safety injection lines and dead legs (1987)

 Hot vortices coming from main coolant lines in connected lines and cold valve leakage coming from charging pumps

Reactor coolant pumps (first issues in 1986)

Network of cracks in pump shafts, thermal barriers,...

Regenerative heat exchangers (Japan, 99/03)

Mixing of main flow and by pass flow at low ΔT inside an elbow located after outlet nozzles.

High Cycle Thermal Fatigue issues in PWR Nuclear Power plants & root causes Residual Heat Removal System mixing tees

- CIVAUX 1: 180mm through wall crack (May 1998)
- Through wall crack found in an elbow weld
- Leak of ~ 30 m3/h in the containment
- Mixing of cold and hot water ($\Delta T \approx 150^{\circ}C$)
- Fatigue damage in all 900/1300 MWe & N4 plants
- Strong aggravating effect of local weld geometry
- Detrimental effect of high surface roughness with network of cracks in grinding areas

High Cycle Thermal Fatigue issues in PWR Nuclear Power plants & root causes Safety injection lines from charging pumps

- Hot vortices in connected dead legs (high ΔT)
- Interaction of hot turbulent penetration coming from main coolant line with cold valve leakage
- Unexpected cold valve in-leakage coming from higher pressures in charging system
- Detrimental effects of weld geometry and of high roughness profiles of ground surface
 - Leak events in Farley (1987), Tihange (1988), Dampierre 2 (1992), Dampierre 1 (1996), ...

JIP2006

AREVA Thermal Fatigue in reactor coolant pump

- Location of thermal fatigue damage (1986)
 - (a) Pump shaft (network of surface cracks)
 - (b) Thermal barrier flange (very low ΔT)

JIP2006

(c) Thermal barrier envelope and diffuser

Operating experience and incidents on austenitic stainless steel components

- Thermal loads like stratification, vortex penetrations or mixing of hot and cold water are the main root causes of incidents
- Incidents occur in different systems with only few leaks (RHRS, SIS/Dead Legs, RCP)
- Following aggravating factors identified

JIP2006

- Detrimental effects of local weld geometry and of high surface roughness (ground area) on HCF strength of austenitic stainless steel components
- Reduction of HCF strength with the mean stress due to stratification & high temperature gradients

AREV

Fatigue test programs conducted on an austenitic stainless steel type 304L

AREVA

AREVA NP

- Objectives was to increase knowledge about the LCF & HCF behavior of austenitic stainless steels
- Three R & D programs on LCF & HCF were carried on the following subjects by AREVA NP & ENSMA:
 - Evaluation of the effect of loading conditions (Δσ or Δε with and without mean stress or mean strain) on cyclic stress strain behavior and lifetime of polished samples
 - 1st ENSMA doctoral thesis (2003) on the effect of mean stress and surface finish on HCF strength of 304L SS at RT (effect of polishing, turning and grinding conditions)
 - 2nd ENSMA doctoral thesis (2006) on the effect of LCF predamage on the subsequent HCF strength of a 304L SS at RT for polished and ground surface conditions

AREVA 1st program on effect of loading conditions

AREVA Mean stress and surface finish effects on HCF strength of 304L (ENSMA thesis, S. Petitjean)

3D cartography of turned or ground sample surface:

- Turned sample T4 surface striations with Rt ~ 80 μm (other turned samples with Rt ~ 10 μm and ~ 40 μm)
- Ground sample surface striations with Rt ~ 40 μm
- Evaluation of stress concentration factors at the bottom of turned (1 < Kt < 1.1) and ground samples (Kt ~ 3.2)</p>

Mean stress and surface finish effects at RT (304L)

HCF strength (10⁷cycles) versus mean stress for three surface conditions (Polished, Turned, ground samples)

15 Paris - May 30, 31 - June 1st, 2006

AREVA NP

A

AREVA

A LCF behavior of 304L SS in air at RT ($\varepsilon_a = \pm 0,3\%$) AREVA

Comparison of the LCF behaviors and lifetimes of polished (Rt < 1 μ m) & ground samples (Rt ~ 40 μ m)

AREVA NP

Effect of LCF pre-damage on HCF strength

AREVA Main conclusions on the LCF & HCF programs

- No effect of loading conditions on the cyclic stress strain behavior of polished 304L stainless steel
 - No mean strain effect on LCF & HCF behavior
 - Some effect of the mean stress on HCF strength
- Very detrimental effect of mean stress on HCF strength of ground samples at room temperature
- Detrimental effect of LCF pre-damage loadings on the subsequent HCF strength much important on ground samples than on polished specimens
- Manufacturing improvement as removal of weld roots and polishing of inner surface of austenitic stainless steel components can increase very significantly their HC thermal fatigue strength

JIP2006