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High pressure
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the rail = a ot of (Rolling contact) the rall
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Rail rolling contact fatigue is the cause of (From SNCF):
~ 50% of rail fractures (taking account weld’s fracture) :

~ 70% of the number of rail replacements
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Context

Ralil contact fatigue cracks

» Costly maintenance operations, train delays
» Safety issues (Ex: derailment causing by rail fracture)

Objectives

* Improve the understanding of the rail fatigue damage behavior

» Develop numerical tools for prediction of crack growth in the rall

» Optimize the maintenance strategy (grinding, inspection planning)
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SV

Context From a dynamics simulation to the crack propagation

. Traffic
Train and track
models
VOCOLIN
Multibody train-track dynamics simulation
w Contact load on
§ the rail surface
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Rail stationary
behaviour
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IDR2 = Initiative for Development Research on Rail
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Outline

ll. Residual stresses In Ralls
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Sources of residual stresses In the rall

Two sources:

* Roller straightening = Manufacturing process

e Train passages = Plastic strain accumulation due to the repeated load

n Thermal stresses (Summer — Winter) = Increase or decrease the risk of final
Fracture
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Sources of residual stresses In the rall

Manufacturing process
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Sources of residual stresses In the rall

Manufacturing process
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Sources of residual stresses In the rall

Manufacturing process (Roller straightening)

Source : TataSteel sEE=E
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Sources of residual stresses In the rall

Manufacturing process (Roller straightening)
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Longitudinal residual stresses (MPa)
A Without thermal treatment

P.A. Rodesch and S.H. Mai 2013: Intern report, SNCF — Innovation and Research
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Sources of residual stresses In the rall

Train passages

®) Plastic strain accumulation due to the repeated loa  d

Train and track
models

VOCOLIN
Multibody train-track dynamics simulation
Contact load on
the rail surface Stresses in the rail under one bogie
STARAIL
Finite element simulation

Rail stationary
behaviour [Mai.93]

H. Maitournam and K. DangVan 1993: J. Mech. Phys. Solids, 41 (1993) 1691-1710

11



Context Residual stresses Crack growth simulation Conclusions

Sources of residual stresses In the rall

Train passages

) Plastic strain accumulation due to the repeated loa  d

o >0MPa
€ OMPa
i Z Elastic
Plastic strain shakedown
<0OMPa

............................. Residual stresses
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Sources of residual stresses In the rall

Two sources:

I >0MPa >0MPa
OMPa
OMPa
<OMPa
OMPa e Residual stresses ..
Manufacturing process Train passages
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Sources of residual stresses In the rall

Two sources:

Rail head
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Conclusions

Procedure of integration of residual stresses
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Procedure of integration of residual stresses

M Stationary calculation (FEM)

Different L
meshes Projection

sl Crack propagation (XFEM)
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Outline

lll.Fatigue crack growth simulations
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Rolling contact fatigue : a multi-scale problem

eeeeee

System scale Rail scale Crack scale

« Rail bending e Wheel rail contact * Opening/contact
« Sticking sliding

NN Y

Benoit TROLLE : PhD 2014, Fatigue crack propagation in rails, 20/03/2014 Lyon
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Context Residual stresses

Methodology

The eXtended Finite Element
Method (X-FEM) [Gra.11]

» Two scale approach :
U= Ubulk + Ucrack

Linear Elastic Fracture
Mechanics

4

» Two kinds of enrichment :
O Discontinuous (lips displacement)

Mode I: Mode II: Maode T1T:
Opening In-planc shear Out-of-planc shcar ) ]
B Singular (crack tip)
Stress singularity at the crack front I o—o
K; Ky g Kir Y\ T
Tij ﬁfj( ) ﬁf ] ( ) \/Hfl ( ) 0 (\/I_) L

K. characterizes the sollicitations at the crack tip
(= Magnitude of each cracking mode)

CAST3M

Gravouil, Combescure, Pommier and Moés 2011 : XFEM for crack propagation
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Modelling of the cracked rall

1 loading cycle = 1 wheel traveling from

the left to the right on the surface of the rall
(quasi-static simulation)
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Modelling of the cracked rall

- Multi-scale parametric mesh (software CAST3M)

i o

A~

/

INEEEEENE
1 I O

- Crack growth rate law: Mixed mode (ICON) [Dub.02]

« Test tip »
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Dubourg 2002: Journal of Tribology, Vol. 124.
Hourlier nad al. 1982 : Institut de Recherche de la sidérurgie francaise, IRSID, No RE958
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Calculation of SIF for one loading cycle : 2D

Stress Intensity Factors (SIF)
are computed for each time step
(each loading position)
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Fatigue crack growth simulation process

Inputs

residual stresses or free
loading(Pmazx, 2a, pyheel of fositions)
» CI&CkUO « Ny, ;urmrk)/
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Propagation at the
end of each cycle

new sin¥ilated cycle lg =1y + Aa
v ND = NO + Af\’r
end of simulation ‘

Benoit TROLLE : PhD 2014, Fatigue crack propagation in rails 23
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Influence of the friction coefficient between

the wheel and the rall

o[ N8 < P,  =845MPa
<« Herack «2a =13.5mm
> XC y B * Hyheel / rail Variable
JRail L%x ; » 126 load steps using a variable Ax
5 - & . "  |=6mm; 8=15% p,. = 0.5;

\ Traffic direction

acceleration situation

A high tangential loading provokes earlier crack
branching upwards or downwards in the rail
depending on the direction of the tangential loading.
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Context Residual stresses

Crack network : “squat configuration”

Inputs:
-P.__ = 845 MPa Traffic direction
-2a =13.5 mm .
- el /rail = 0025 Vb et c
- Two initial cracks: crack 1 = jmn crack 2
Meracks = 003‘ { = 6mm
0 =15 Initial cracks

growth

growth

Longitudinal rail head section through a squat

Traffic direction

[Grassie2012] Traffic direction

£>

25




Context Residual stresses Crack growth simulation Conclusions

Influence of the residual stresses

N\ —> Crack tip in area of high
I compressive stresses

/
L/ SIF: one loading cycle

SIFs (Pa)

--- K, free

--- K, free

--- K, with residual
stresses

--- K, with residual
stresses

Tension

Xc/a

-6,00E+00 2,00E+00 4,00E+00 6,00E+00

uuuuuuuu

- The crack is always closed during the first

loading cycle with residual stresses (K, = 0)
=> Crack growth with shear mode (K, # 0)

Residual stresses in the rail's head
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Influence of the residual stresses

Crack tip in area of high
compressi/ve stresses

Compression \

Propagation path and crack growth rate

Tension

Compression

WITH residual stresses

Initial crack .
= 6mm >
M =0.025 Free P 8.47 10°
o cycles
1.63 10°
cycles

The crack branches upwards with a
slower propagation rate If residual

Residual stresses in the rail's head

stresses are taken into account.
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Influence of the residual stresses

Crack tip in area of high
compressi/ve stresses

Compression \

Tension

Compression

Residual stresses in the rail's head
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The crack branches upwards with a

slower propagation rate If residual
stresses are taken into account.
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Conclusions

Influence of the residual stresses

Crack tip in area of high
compressi/ve stresses

Compression \

Tension

Compression

Residual stresses in the rail's head

Propagation path and crack growth rate

Initial crack
= 6mm

M=04

Free

WITH residual stresses

A s
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Outline

\VV.Conclusions
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Conclusions

 Two sources of residual stresses in the rail: manufacturing process (C - form)
and train passages (local)

 Development of a robust numerical tool to simulate the fatigue crack growth in
rails taking into account [Benoit Troll€] :

- Contact and friction between the crack lips,

- Mixed mode fatigue law and non-proportional crack branching criterion,
- Residual stresses (manufacturing process + train traffic),

- Bending moment (not presented here).

 Rail contact fatigue crack growth simulations: Residual stresses has to be taken
into account since they modify the growth rate and the propagation path.
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