RESIDUAL STRESSES IN RAILS

Si Hai Mai, M.-L. Nguyen-Tajan

SF2M, 13th March 2014

SNCF - Innovation & Research, Paris

Context

Context

Rail contact fatigue cracks

- Costly maintenance operations, train delays
- Safety issues (Ex: derailment causing by rail fracture)

Objectives

- Improve the understanding of the rail fatigue damage behavior
- Develop numerical tools for prediction of crack growth in the rail
- Optimize the maintenance strategy (grinding, inspection planning)

Context

From a dynamics simulation to the crack propagation

IDR2 = Initiative for Development Research on Rail

Outline

I. Context

II. Residual stresses in Rails

- **III. Fatigue crack growth simulations**
- **IV.** Conclusions

Sources of residual stresses in the rail Two sources:

- **Roller straightening** = Manufacturing process
- **Train passages** = Plastic strain accumulation due to the repeated load

Thermal stresses (Summer – Winter) = Increase or decrease the risk of final Fracture

Manufacturing process

Manufacturing process

Manufacturing process (Roller straightening)

Manufacturing process (Roller straightening)

P.A. Rodesch and S.H. Mai 2013: Intern report, SNCF - Innovation and Research

Sources of residual stresses in the rail Train passages

➡ Plastic strain accumulation due to the repeated load

Stresses in the rail under one bogie

<u>H. Maitournam and K. DangVan 1993</u>: J. Mech. Phys. Solids, 41 (1993) 1691-1710

Sources of residual stresses in the rail Train passages

➡ Plastic strain accumulation due to the repeated load

Sources of residual stresses in the rail Two sources:

13

Two sources:

Rail head

Procedure of integration of residual stresses

Procedure of integration of residual stresses

Outline

I. Context

II. Residual stresses in rails

III.Fatigue crack growth simulations

IV. Conclusions

Rolling contact fatigue : a multi-scale problem

Benoit TROLLE : PhD 2014, Fatigue crack propagation in rails, 20/03/2014 Lyon

Methodology

Linear Elastic Fracture Mechanics

Stress singularity at the crack front

$$\boldsymbol{\sigma}_{ij} = \frac{K_I}{\sqrt{2\pi r}} f_{ij}^{I}(\boldsymbol{\theta}) + \frac{K_{II}}{\sqrt{2\pi r}} f_{ij}^{II}(\boldsymbol{\theta}) + \frac{K_{III}}{\sqrt{2\pi r}} f_{ij}^{III}(\boldsymbol{\theta}) + o\left(\sqrt{r}\right)$$

K_i characterizes the sollicitations at the crack tip (= Magnitude of each cracking mode)

CAST3M

Gravouil, Combescure, Pommier and Moës 2011 : XFEM for crack propagation

The eXtended Finite Element Method (X-FEM) [Gra.11]

- Two scale approach : $U = U_{bulk} + U_{crack}$
- Two kinds of enrichment :
 - Discontinuous (lips displacement)
 - Singular (crack tip)

Conclusions

SNCF

Modelling of the cracked rail

Load

HERTZIAN LOADING

1 loading cycle = 1 wheel traveling from the left to the right on the surface of the rail (quasi-static simulation)

Modelling of the cracked rail

- Multi-scale parametric mesh (software CAST3M)

- Crack growth rate law: Mixed mode (ICON) [Dub.02]

$$\frac{da}{dN} = 2.10^{-9} (\Delta K_{eq})^{3.33} \quad \Delta K_{eq}^2 = \Delta K_I^2 + 0.772 * \Delta K_{II}^2$$

- Crack branching criterion: Multi-axial and non proportional loading [Hou.82]

Conclusions

<u>Dubourg 2002:</u> Journal of Tribology, Vol. 124. <u>Hourlier nad al. 1982</u> : Institut de Recherche de la sidérurgie française, IRSID, No RE958

Calculation of SIF for one loading cycle : 2D

22

Fatigue crack growth simulation process

<u>Benoit TROLLE</u> : PhD 2014, Fatigue crack propagation in rails

Influence of the friction coefficient between the wheel and the rail

Crack network : "squat configuration"

Residual stresses in the rail's head

SIF: one loading cycle

- The crack is always closed during the first loading cycle with residual stresses ($K_1 = 0$) => Crack growth with shear mode ($K_{11} \# 0$)

Residual stresses in the rail's head

Propagation path and crack growth rate

The crack branches upwards with a slower propagation rate If residual stresses are taken into account.

Residual stresses in the rail's head

The crack branches upwards with a slower propagation rate If residual stresses are taken into account.

Residual stresses in the rail's head

Propagation path and crack growth rate

Outline

- I. Context
- **II.** Residual stresses in rails
- **III. Fatigue crack growth simulations**

IV.Conclusions

Conclusions

• Two sources of residual stresses in the rail: manufacturing process (C - form) and train passages (local)

• Development of a robust numerical tool to simulate the fatigue crack growth in rails taking into account [Benoit Trollé] :

- Contact and friction between the crack lips,
- Mixed mode fatigue law and non-proportional crack branching criterion,
- Residual stresses (manufacturing process + train traffic),
- Bending moment (not presented here).

• Rail contact fatigue crack growth simulations: Residual stresses has to be taken into account since they modify the growth rate and the propagation path.

Acknowledgments

- LaMCoS, Laboratory of contact and structural mechanics at INSA Lyon, France (M.-C. Baietto and A. Gravouil)

- CEA, French Atomic Energy Commission, in Saclay, France (B.Prabel), www-cast3m.cea.fr.

- IDR2 consortium, Initiative for Development and Research on Rails composed by SNCF, RATP, Tata Steel, IFSTTAR, MECAMIX, LAMCOS.

THANK YOU FOR YOUR ATTENTION !

<u>si-hai.mai@sncf.fr</u> Structural Mechanics and Dynamics SNCF – Innovation and Research, Paris, France <u>www.recherche.sncf.com</u>